
Toward improved mapping of 

Sea Surface Height

Clement Ubelmann (CLS)

Patrice Klein (Ifremer), Lee-Lueng Fu 

(JPL), Bruce Cornuelle (SCRIPPS), …



60km 

mesoscale 

eddy

10 days

later

longitude

la
ti

tu
d

e

SSH sampled with SWOT 

(from SWOT-L3 simulator)

Today’s OI mapping cannot handle non-

linearities : 

�Most of the SWOT signal would be filtered

out of the maps, unused.

� We need to go beyond linear OI to design 

new data products

Motivations for going beyond linear objective mapping

Strong non-linearities: active advection of PV



Optimal transport (Vidard et al.)



- From given SSH, this system defines a short-term SSH evolution forward and 

backward in time 

- Physical characteristics:  - Scales >>Lr: wave-like propagation (westward)

- Smaller scales: self-advection

Lower layer in rest

ρ1

ρ2

� 1st baroclinic mode known to explain a large part of the eddy variability

� SSH and a Rossby radius climatology are sufficient to resolve PV conservation in 

first baroclinic mode framework :

� We found that at short time scales (until ~10-20 days), the motion of 50km-300km 

mesoscale eddies is very well explained by this propagator (illustration next slide)

First baroclinic mode PV conservation as a « propagator »

(e.g. Charney, 1948)



Truth at t0-2days Unknown truth at t 0 Truth at t0 + 2 days

More details in Ubelmann&Klein&Fu, JTECH, 2015

- The use of the propagator significantly reduces residual errors

Illustration on a simple case

Standard interpolation Forward propagationBackward propagationDynamic interpolation Standard interpolation error Dynamic interpolation error 



Time window = 6days
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� Performing interpolation in the ‘propagator space’ would 

‘extend’ time decorrelations



Dynamic Optimal Interpoaltionnalysis
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e.g. Arhan et Colin de Verdière, 1985

Standard mapping with predefined covariances B
Covariance model:

Lower layer in rest
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(e.g. Charney, 1948)

Dynamic mapping with flow-dependant covariances

Idea: keep a centered OI time/space analysis, with above equations M used as a covariance 

propagator in time:
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Practically solved in a reduced space (2D Fourier decomposition)~. Iterations on the guess xg. 



One of the ~1000 Fourier component

Γ0,k Γ t,k

xg

Gk = HΓk
represents the propagated Fourier components (or ‘Green functions’) by the 

linear response of the propagator around the guess. G (projected in obs space) is

the green function matrix

Linear response around the guess after 2 days

B' = ΓQΓT Q is diagonal, constructed consistently with the spatial covariance (inverse FFT of 

SSH spectrum)

Computing the covariances B’ from the linearized propagator 

Γk

Time evolving guess (integrated forward and backward )

gxM



Representers:
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How do covariances look like



Constellation of 3 satellites on Jason (2) and AltiKa (1) orbits

3.3cm RMS noise at 

~5.5km sampling

Along-track synthetic observations

- Regional study in the Gulf Stream 

- Reference SSH field: ‘unknown truth’ state from a MITgcm global 

simulation at ~6km resolution.

Experimental setup: OSSEs
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Error variance reduction by ~30-35% over 6 month worth of analysis

Results



‘static’ OI using predefined 

covariances

‘dynamic’ OI using flow-dependant covariances

computed with green function approach 

accounting for the first baroclinic mode

Truth at day 17

ROMS Oregon 
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Day 17 
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Conclusions

• A first attempt, will be demonstrated with real obseravtions soon.

• Possible improvements of the propagator:

�Add impact of Ekman current?

�test SQG framework

� Add cyclo-geostrophy in advection term?

• Altimetry-only so far, but does not exclude multi-sensor approaches 
for better constraints

• Others possible approaches to “fill” temporal gaps, e.g. optimal 
transport, …


